首页> 外文OA文献 >First Principles Predictions of the Structure and Function of G-Protein-Coupled Receptors: Validation for Bovine Rhodopsin
【2h】

First Principles Predictions of the Structure and Function of G-Protein-Coupled Receptors: Validation for Bovine Rhodopsin

机译:G蛋白偶联受体的结构和功能的第一原则预测:牛视紫红质的验证。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs. In this article we validate the MembStruk procedure by comparing its predictions with the high-resolution crystal structure of bovine rhodopsin. The crystal structure of bovine rhodopsin has the second extracellular (EC-II) loop closed over the transmembrane regions by making a disulfide linkage between Cys-110 and Cys-187, but we speculate that opening this loop may play a role in the activation process of the receptor through the cysteine linkage with helix 3. Consequently we predicted two structures for bovine rhodopsin from the primary sequence (with no input from the crystal structure)—one with the EC-II loop closed as in the crystal structure, and the other with the EC-II loop open. The MembStruk-predicted structure of bovine rhodopsin with the closed EC-II loop deviates from the crystal by 2.84 Å coordinate root mean-square (CRMS) in the transmembrane region main-chain atoms. The predicted three-dimensional structures for other GPCRs can be validated only by predicting binding sites and energies for various ligands. For such predictions we developed the HierDock first principles computational method. We validate HierDock by predicting the binding site of 11-cis-retinal in the crystal structure of bovine rhodopsin. Scanning the whole protein without using any prior knowledge of the binding site, we find that the best scoring conformation in rhodopsin is 1.1 Å CRMS from the crystal structure for the ligand atoms. This predicted conformation has the carbonyl O only 2.82 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 0.62 Å CRMS from the crystal structure. We also used HierDock to predict the binding site of 11-cis-retinal in the MembStruk-predicted structure of bovine rhodopsin (closed loop). Scanning the whole protein structure leads to a structure in which the carbonyl O is only 2.85 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 2.92 Å CRMS from the crystal structure. The good agreement of the ab initio-predicted protein structures and ligand binding site with experiment validates the use of the MembStruk and HierDock first principles' methods. Since these methods are generic and applicable to any GPCR, they should be useful in predicting the structures of other GPCRs and the binding site of ligands to these proteins.
机译:G蛋白偶联受体(GPCR)参与细胞通讯过程,并介导视力,嗅觉,味觉和疼痛等感觉。它们构成了重要的药物靶标超家族,但是原子级结构仅可用于一种GPCR牛视紫红质,因此很难使用基于结构的方法来设计受体特异性药物。我们已经开发了MembStruk第一性原理计算方法来预测GPCR的三维结构。在本文中,我们通过将其预测结果与牛视紫红质的高分辨率晶体结构进行比较来验证MembStruk程序。牛视紫红质的晶体结构通过在Cys-110和Cys-187之间建立二硫键而在跨膜区域上封闭了第二个细胞外(EC-II)环,但我们推测打开此环可能在激活过程中起作用通过与螺旋3的半胱氨酸键连接受体。因此,我们从一级序列预测了牛视紫红质的两个结构(晶体结构无输入)–一个像晶体结构一样闭合EC-II环,另一个打开EC-II回路。 MembStruk预测的带有闭合EC-II环的牛视紫红质的结构在跨膜区主链原子中偏离晶体2.84Å坐标均方根(CRMS)。其他GPCR的预测三维结构只能通过预测各种配体的结合位点和能量来验证。对于此类预测,我们开发了HierDock第一性原理计算方法。我们通过预测牛视紫红质的晶体结构中11-顺-视网膜的结合位点来验证HierDock。在不使用结合位点的任何先验知识的情况下扫描整个蛋白质,我们发现视紫红质的最佳得分构象是配体原子晶体结构的1.1ÅCRMS。该预测的构象具有与Lys-296的N相比仅2.82Å的羰基O。进行这种Schiff碱键键合并使其最小化,从晶体结构中仅获得0.62ÅCRMS的最终构象。我们还使用HierDock预测了MembStruk预测的牛视紫红质(闭环)结构中11-顺式-视网膜的结合位点。扫描整个蛋白质结构会导致一种结构,其中羰基O与Lys-296的N仅2.85Å。进行这种Schiff碱键键合并使其最小化,从晶体结构中仅产生最终构象2.92ÅCRMS。从头开始预测的蛋白质结构和配体结合位点与实验的良好一致性验证了MembStruk和HierDock第一原理的方法的使用。由于这些方法是通用的,并且适用于任何GPCR,因此它们在预测其他GPCR的结构以及配体与这些蛋白质的结合位点时应很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号